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1. Introduction. Let n 2: 2 be an integer and 0 C lW.n be a bounded
domain with smooth boundary r = ao. We consider 0 as a reference
configuration domain of an elastic medium with elastic tensor C(x) =
(Cijkl(X)h::;i,j,k,l::;n E COO(IT). We assume that C(x) satisfies the following
hyperelasticity and strong convexity conditions:
(Hyperelasticity)

(1.1) Cijkl(X) = Cklij(X), \:Ix E IT, 1 ~ i,j, k, I ~ n.

(Strong Convexity) There exists {) > 0 such that for any x E IT and real
matrix (iij),

(1.2)
n n

L Cijkl(X)iijiki 2: {) L irj'
i,j,k,l=l i,j=l

The problem of Elastic Impedance Tomography consists in determining
the elastic tensor C by making displacement and traction measurements at
the boundary of the domain. This information is encoded in the so-called
Dirichlet to Neumann map. Considerably progress has been made in recent
years in the question of identifiability in the case that the elastic tensor is
isotropic ([N-U I,ll]). A key ingredient in the global identifiability result of
[N-U I] is the construction of complex geometrical optics (or exponentially
growing solutions) for the Lame system and in fact for any differential
system that can be reduced to a first order perturbation of the Laplacian.
For other applications of this construction to other inverse boundary value
problems involving first order perturbations of the Laplacian see [U].
In this paper we develop a layer stripping algorithm for isotropic elas­

tic materials in all dimensions n 2: 2 and for a large class of anisotropic
elastic materials in three dimensions, the so-called transversally isotropic
materials. We describe below in more detail the mathematical problem and
our results.
Let 0 < t ~ 1 and define O(t) := {x E O;dist(x,aO) > t}. Then the

boundary r(t) of O(t) is smooth.
Let us consider the boundary value problem (BPk

(BP)t {(LUMX) := .t aXj(Cijkl(X)aXIUk(X)) = 0 in O(t)
J,k,l=l

Ui = Ii E COO(r(t)) on r(t) (1 ~ i ~ n).
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where u(x) = (UI(X), ... ,Un (x)) is the displacement vector of O. It is well
known that (BP)t is well posed.

DEFINITION 1.1. We define the Dirichlet to Neumann map (DN) in
O(t), A(t), by

n

(1.3) (A(t)f)i= L VjCijklox,Uklrct), i=l,oo.,n
j,k,l=l

where U = (Ul,"" un) E COO(O(t)) is a solution of(BPh, f = (II,.··, fn)
E COO (00) and v = (VI,"" vn) is the outer unit normal of f(t).
The layer stripping algorithm consists in finding an approximation for

the medium parameters layer by layer from the Dirichlet to Neumann map
A(O). This consists in two steps:
1) First one finds the parameters of the medium at the boundary f(t) from
A(t).
2) One derives a differential equation for A(t) in O(t) involving A(t) and
tangential derivatives of the medium parameters that allows to approxi­
mately propagate the boundary data to the interior, layer by layer. by
using the approximation

A(t + 8t) - A(t) '" d~~t)8t.

This algorithm has been developed for different inverse problems (see for
instance the Proceedings [C] and the references there). For the electrical
impedance imaging problem it was analyzed in detail in [S-C-I-I]. A con­
vergent layer stripping algorithm was developed in [S] in two dimensions
for the case in which the conductivity depends only on the radius.
In this paper we derive a Riccati equation for A(t) for any anisotropic

elastic medium satisfying (1.1) and (1.2). We also prove that A(t) is a clas­
sical pseudodifferential operator of order 1 on r(t) and that the full symbol
of this operator determines the full Taylor series of the surface impedance
tensor that we describe below. From the surface impedance tensor it is
known that we can recover the Taylor series at the boundary of the Lame
parameters for isotropic medium ([N-U]) in dimension n ~ 2 and the Tay­
lor series at the boundary of the elastic tensor for a class of anisotropic
medium in two dimensions ([N-U]) and for transversally isotropic materi­
als in three dimensions ([N-T).) Thus a layer stripping algorithm is derived
for these kind of elastic materials. The general question of under which
conditions one can determine the boundary values of the elastic tensor for
general anisotropic materials is open. It is known that this is not true in
general ([N-T I]).
We take boundary normal coordinates (x 1 ,oo.,xn-l,xn) = (y,xn)

such that f(t) is locally expressed as xn = t. Let u(A(t))(y, TJ) and
u(A(t))(y, TJ) be the principal symbol and the full symbol respectively of
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the pseudodifferential operator A(t). The tensor

Zt(Y, TJ) := 11'/1- 1u(A(t))(y, TJ)

is called the surface impedance tensor in Stroh's formalism for anisotropic
elasticity (see [C-S)).
In this paper we will prove that u(A(t))(y,1'/) determines cI>(t) :=

{(fJj Z3(y,TJ)13=t;jE2+:=NU{O}}.
The method of proof of this result follows the ideas in [L-U] for the

anisotropic electrical impedance tomography. In [L-U] a factorization of the
conductivity equation into a heat equation and a backwards heat equation
is used to prove the boundary determination of anisotropic conductivities
in special coordinates. This method has the following advantages: a) It
derives the Riccati equation for the DN map. b) It proves that the DN
map is a pseudodifferential operator. Then, using a) and the calculus of
pseudodifferential operators, one can compute its full symbol which con­
tains information of the medium parameters at the boundary. A Riccati
equation for the DN map associated to anisotropic conductivities was de­
rived in [L-U]. From the full symbol of the DN map one can recover the
full Taylor series of the conductivity at the boundary ([L-U)). However this
was not realized as a layer stripping algorithm.
In this paper we develop this approach for the considerable more com­

plicated case of anisotropic elastic materials. In section 2 we develop the
factorization of the elasticity operator and derive the Riccati equation for
the DN map. In section 3 we show that the full symbol of the DN map de­
termines cI>(t). Therefore combining this with the boundary determination
results in [N-U] and [N-T] we have completed the layer stripping algorithm
for isotropic and transversally isotropic materials. We expect that this will
be extended to other type of anisotropic materials.

2. Factorization of L. Let (xl, ... , x n - l , x n ) = (y, x n ) be boundary
normal coordinates as previously defined. Then the tensoriallocal expres­
sion of (BP)t in terms of these coordinates is

{

(Lu)i = t "Vj(Ciik1"V1Uk) = 0 in{xn > t}
(BPh i,k,l=l

uil =fi (l<i<n)xn=t - -

where "Vj is the covariant derivative with respect to a~J and

n

Cijk1(x) = L gai(x)li(x)gck(x)gdl(x)Cabcd(X).
a,b,c,d=l

where



378 GEN NAKAMURA AND GUNTHER UHLMANN

We define

Q(x,TJ)

(2.1)

R(x, TJ)

T(x) :=

('I: Cijkl(X)TJjTJI; it 1, ,n )
. k ~ 1, ,n
3,1=1

R(x, TJ) + t R(x, TJ)

(
I:Cijkn(X)TJj; i! 1, ,n)
. k ~ 1, ,n
3=1

(
Cinkn(x); i! 1, , n )

k ~ 1, ,n

The principal symbol of - L is given by

(2.2) M(x, TJ,en) := T(x)e~ + A~(x, TJ)en + Q(x, TJ)

where TJ denotes the dual variable to y and en denotes the dual variable to
xn . For the operators we have

-2 h - - - - -(2.3) -L = T(x)Dxn +A1 (x, Dy)Dxn +Q(x, Dy)+Fo(x)Dxn +F1(x, Dy)

where HFo(x) is a real-valued matrix and F1(x, Dy) is a first order
differential system, where

Dxn = -H\7n

Dy = (Dyo, ... ,Dyn-l)
Dyi = -A\7j

Using the hyperelasticity condition (1.1) we have that Q(x, TJ) and T(x)
are symmetric n x n matrices and by the strong convexity condition (1.2),
T(x) and M(x,TJ,en) are positive definite matrices for x E n, (TJ,en) E
~n\o. Hence for fixed (x, TJ), M(x, TJ, en) = 0 in en admits n number of
roots en = (j (j = 1, ,n) with positive imaginary parts and n number
of roots en =(j (j =1, ,n). The following result gives the factorization
of the principal symbol of -L.

THEOREM 2.1. ([G-L-R] Let

(2.4) B1(x, TJ) := (i (M(x, TJ, ()-1d()(i M(x, TJ, ()-1d()t1

where I C C+ := {( E C; Im( > O} is a closed contour enclosing all the (j
(j = 1, ... , n). Then we have
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with Spec(B1(x, 7])) C C+ where Spec(B1(x, 7])) := {spectrum of B1(x,7])}.
THEOREM 2.2. There exist classical pseudodifferential operators B(x,

Dy ) and Go(x, Dy ) of orders 1 and 0 respectively depending smoothly on
xn (0 ~ xn ~ 1) such that

(2.6)

and

Moreover the operator B =B(x, Dy ) satisfies the Riccati equation

and

where J{ is a smoothing operator and u is a solution of (BPh­
Remark. We can more conveniently rewrite (2.8) in the form:

Observe that each of the summands of (2.10) have order 1 since Q- B* T B
is of order one by (2.2) and (2.5).

COROLLARY 2.1. Let us consider A(t) as an operator sending covariant
vector functions to covariant vector functions. We define

(2.11)

that is
n

(T-1g* A(t)J)i = L (T-1)ik liAr fm, i = 1, ... , n
k,l,m=l

where

A(t) =(A1(t)h~i,j~n, f = (ft, ... ,fn)

and

(2.12)
.. ~ oxi OXi

g*(X):= (gIJ)(X) = LJ £l(X)£l(X)'
k=l UXk UXk

Then A(t) satisfies, modulo a smoothing operator, the Riccati equation
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where

(2.14)

with

where

(2.15)

and

(2.16)

_T-I(Ah + F, )T- IE +(T- I E )2} II 0 I I x n =t

Proof of Corollary 2.1. This easily follows from the fact that

(2.17) g*A(t) = -H(TB + Edlxn=t mod smoothing

and (2.7).
Proof of Theorem 2.2. From (2.7), B and Go must satisfy

(2.18) - * h-TB+DxnT-B T+GoT=AI +Fo

(2.19)
-TDxnB - (DxnT)B + B*TB - CoTB =Q + FI

h h - - -where Al =Al (x, Dy), Q=Q(x, Dy), FI =FI(x, Dy).

By eliminating Go from (2.19) using (2.18), we get (2.8).
Now by the composition formula for pseudodifferential operator, we

have from (2.8),

2)a~-la;u(B)D;u(B)+L(a!rIa;(T-IA~)D;u(B)+T-IQ+Dxnu(B)+
a a

+T- I Fou(B) +T- IFI '" O.
(2.20)
where (2.20) is interpreted in the asymptotic sense of symbols. If we sub­
stitute

(2.21)
00

u(B)(x, TJ) '" LBI-j(x, TJ)
j=O

with each BI_j(x, TJ) homogeneous of degree 1 - j with respect to 1/ for
ITJI 2: 1 into (2.20), we obtain the following conditions. Grouping the
homogeneous terms of degree 2 we have

(2.22)
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which is valid by (2.22). Grouping the homogeneous terms of degree 1 we
have

n-l

BoBI +BIBo+ T-I(T(A~)Bo = LO'1jBI DyjBI ­
j=l

n-l

- LO'1j(T-I(T(A~))DyjBI - DxnBI - T- I FoBI - T-I(T(FI ) = O.
j=l

(2.23)

and grouping the terms homogeneous of degree 0 we have

n-l

B_IBI +BIB_1 +T-I(T(A~)B_I = - L(01/j BDyjBI + 01/ j B I DyjBo)
j=l

- L: (a!rIO~ BID; BI
10'1=2

1"'12: 1
j+k=r-I"'I+2

j,k2: 0

(2.25)

n-l

- L:01/j(T-l(T(A~))DyjBO - DxnBo - T- I FoBo - T-I(To(Ft)
j=l

(2.24)
where (To(Ft) is the term homogeneous of degree 0 in iT(Ft}. Moreover
grouping the homogeneous terms of degree -r (r E N) we have

B_r-IB1+ B1B_r- 1+ T-I(T(A~)B_r_1 = - L: BI-jBI - k

j+k=r+2
j,k2: 1

L: (a!)-lo;BI_jD;BI _k

n-l

- L81/j(T-l(T(A~))DyjB_r - DxnB_r - T- 1FoB_r .
j=l

To see that (2.22)-(2.25) are solvable, we note that we have from (2.5),

(2.26) B_rBl + BIB_r + T-l(T(A~)B_r =
(-T-1(T(Q)B11)B_r - B_r (-BI ) (r E Z+),

Also from the fact that Spec(Bt} C C+ and the strong convexity condition
(1.2) we conclude

(2.27) Spec(-Bt} C C_, Spec(-T-I(T(Q)B1
I ) C C+.

Once B is determined modulo a smoothing operator we can determine
Go modulo a smoothing operator from (2.18). The recursion formula for
GO,-j (j E Z+) with

00

(2.28) O:(Go) '" L: Go,-j
j=O
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is given as follows:

n-1 n-1

(2.29)Go,0 = LT01JjB1DyjT-1_(DxnT)T-1 + L o1Jj DyjB; + BoT- 1

j=l j=l

GO,-j = L (o:!)-l(To; B_HlaID;T-1 + 0; D;B~Hlal) (j EN).
lal~j+l

(2.30)
Now using the factorization (2.7) in a backwards heat equation and a

heat equation we can argue as in [L-U], Proposition 1.2 to conclude (2.9)
finishing the proof of the Theorem. Since we can see from (2.7), (2.17) and
Spec(Bi) C C_ that A(t) is a classical pseudodifferential operator of order
1 depending smoothly on t (0 :S t ~ 1).

3. The identification of 4>(t) from u(A(t)). Let

(3.1)
00

g* A(t) 'V L A1_j(t)
j=l

where each A1-j(t)(y, TJ) is homogeneous of degree 1 - j with respect to

TJ for ITJI ~ 1. For k E R:+, I E ~, mod (it, Sl) means we are neglecting
the terms in Sl := {the symbol Pt(Y, TJ) of a classical pseudodifferential
operator Pt(Y, Dy ) of order I depending smoothly on t (0 :S t ~ I)} and
the term (j. Sl which depends only on the i-derivatives ofC(y, i) up to order
k.

THEOREM 3.1. There is a linear bijective map W(x, TJ) on the set of
all n x n matrices which depend only on C(x) but not on its derivatives
such that

A-r(t)(y,TJ) = ITJI-1W(y,t,TJ)(DtA1-r(t)(y,TJ)) mod (f;,s-r-1) (r E R:+).
(3.2)
Therefore u(A(t))(y, TJ) determines 4>(t).

Proof. By (2.17) we have

We prove (3.2) by induction on r. From (2.23)

BoB1+B1Bo+T-10'(A~)Bo = -DxnB1_T1FoB1_T- 1F1 mod (T2n, SO)

and from (2.7)
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Hence

BoBl + BlBo+ T-lU(A~)Bo = -DxnBl - T-l(DxnT)Bl - T- lDxnEl
=-T-lDxn(TBl +El )

= -HT-l DxnAl(Xn) mod CT2n, So).

Using (3.3) we have

BoBl +BlBo+T-lu(A~)Bo = (-T- lu(Q)B1l )Bo - Bo(-Bd

= HT- l {( -u(Q)B1
lT- l )(-HTBo)

-(-HTBo)(-Bd
= HT-l{(-u(Q)BllT-l)AO(Xn) - Ao(xn)(-Bd}

Here note that

(3.4) Spec(-Bd C C_,

So if we denote by W(x )(Y) the solution X of the matrix equation

we have

Hence (3.2) holds for r = O.
Now let q EN and let us assume (3.2) is true for all r :S q. From (3.2)

and (3.3) we have that each Bl-j (j :S q + 1) depends only on C(x) and
its xn-derivatives of C(x) up to order j. Hence from (2.25)

HT- l {( -u(Q)B1lT- l )A-q_l (xn) - A_q_l(Xn)(-Bd}

= -HT-l DxnA-q(xn) mod ('r:;tl, S-q-l).

By the definition of W (x) we have
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